
A Business Protocol: Project in Event-B

Ravi Bhoraskar

April 25, 2011

Contents

1 Introduction 2

2 Problem Specification 2

3 Requirements Document 3

4 Design Patterns 3

5 Refinement Strategy 4

5.1 Refinement Strategy for the Design Pattern . 4
5.2 Refinement Strategy for the Bussiness Protocol . 4

6 Personal comments, insights and lessons learnt 5

7 The Rodin Models 6

7.1 Refinements for the Design Pattern . 6
7.2 Refinements for the Business Protocol . 9

1

2 PROBLEM SPECIFICATION

Init

Free Game

Termination

Last Proposal

Buyer Sends Proposal

Buyer Sends Last Proposal

Buyer Sends Terminate
Message

Buyer Sends Terminate
Message

Buyer Sends Terminate
Message

Buyer Sends
Acceptance/
Counter Proposal

Seller Sends
Acceptance/
Counter Proposal

Sender Accepts

Sender Rejects

Figure 1: State Transition Diagram

1 Introduction

This project is based on A Bussiness Protocol described in [1]. Essentially, we aim at constructing the
model of a business protocol. This protocol determines the negotiation taking place between a buyer and
a seller of an unspecified commodity. Both the buyer and seller begin in a certain state, and through
exchange of messages, they move from one state to another. Also through messages, they try and negotiate
the specifics of the transaction, and the protocol may eventually end in either a success (meaning that the
negotiations have been successful) or a failure (meaning that they haven’t). The modeling is done using
Event-B, and the model is implemented using Rodin [2]. We attempt to use Design Patterns in Event-B,
for the ease of modeling similar patterns used multiple times. In this report, we document the details of
the project, including the Specifications document, the refinement strategies, and our experiences with
using Event-B and Rodin during the course of this project.

2 Problem Specification

This protocol determines the negotiation taking place between a buyer and a seller. The outcome of the
protocol might be as follows:

1. The two parties agree on a final agreement by which the seller sells a certain quantity of a certain
product to the buyer at a certain price. Note that the product, the quantity, and the price are all
abstracted here as an INFO exchanged between the participants;

2. the two parties might end up by not succeeding in finding an agreement;

The protocol is divided into four phases: the initial phase, the free game phase, the last proposal

phase, and the termination phase. (Refer Figure 1).

• In the initial phase, the buyer starts the protocol by sending a proposal to the seller, which the
seller must acknowledge

• After this initial proposal has been received by the seller, and the Ack has been received by the
buyer, the protocol enters the free game phase. In this second phase buyer and seller can send

2

4 DESIGN PATTERNS

counter-proposal or acceptance to the other partner proposal in a fully asynchronous way. In this
phase, an acceptance or a counter-proposal by either party is never definitive. We abstract the
acceptance/counter proposal as just Data, which the buyer and seller may send and receive asyn-
chronously.

• The last proposal phase is at the initiative of the buyer which makes it clear to the seller that the
proposal sent to it is the last one; the seller can either accept it or reject it. It cannot send a
counter-proposal. In our model, the seller does this by the Ack message itself.

• The termination phase is reached after the buyer sends a termination message, which the seller has
to acknowledge. The termination phase can be broken into two states - the success state and the
failure state. The end event is an observer, that can only be called in the termination state.

During the three first phases, the buyer can always cancel the protocol by sending a fail message to the
seller, which needs to acknowledge it. This has the immediate effect to move the protocol to the failure
phase. When in the free game state, the buyer may choose to send a succeed message, which causes the
protocol to move to the success state.

The channels between the buyer and seller are assumed to be reliable, so that messages sent are
guaranteed to be delivered to the intended recipient.

3 Requirements Document

• The protocol determines the negotiation taking place between a buyer and a seller

• The two parties may agree on a final agreement or may not succeed in finding an agreement

• The protocol is divided up into five states: the initial state, the free game state, the last proposal
state, the failure state and the success state.

• The protocol can end in either the failure or the success state.

• State transitions are allowed as in the FSM showed in Figure 1.

• A transition is allowed from init, free game and last proposal state to the failure state.

• A transition is allowed from last proposal state to the success state.

• Each state transition can occur exactly once in one run of the protocol

• The buyer initiates every state transition by sending a message. The seller changes state when it
receives the message, and the buyer when it receives the Ack. Thus, the buyer performs a state
transition only after the seller has already done so.

• In the free game state, both buyer and seller can send messages to each other in an asynchronous
manner. Each message must be acknowledged, and the sender does not send the next message till
the Ack is received.

• In the last proposal state, the buyer may send either a succeed or fail message, which causes
appropriate state transitions.

4 Design Patterns

The same pattern is used at several places in the project:

One party sends a message to the other, and waits for an Ack. The other party receives the
message and sends an Ack. The first party stops waiting for an Ack when it receives it.

3

5 REFINEMENT STRATEGY

Hence the concept of design patterns was useful in this case. The SendAndAck One Channel design
pattern fulfills exactly this requirement. This design pattern is used several times in the Machine m03

Introducing SendAndAck. It is used at the following places:

• Begin Events (go to free game state)

• Fail Events (go to the failure state)

• Succeed Events (go to the success state)

• Last Proposal Events (go to the last prop state)

• Events where the buyer sends stuff and seller acks

• Events where the seller sends stuff and buyer acks

If proper support for design patterns is available, then any change to the underlying send and re-
ceive mechanism would involve only changing the SendAndAck One Channel machine, and proving the
invariants for it. For example, extending this model to an unreliable channel would need refining this
design pattern machine for an unreliable channel (By introducing the Demon Events). In case of this
particular project, design pattern support would lead to something similar to Networking Protocol Layers.
The design pattern would be the Transport Layer, which guarantess lossless and in order packet delivery.
The Bussiness Protocol would then be like the Application Layer, which uses the Transport Layer with-
out really worrying about its intricacies, and how it works on the inside. Also, it would make possible
independent and parallel refinements at the transport and application layers.

However, Rodin doesn’t have any support for design patterns. This leads to copying of code in copious
amounts. Also, any change in the Design pattern (e.g. going from a single channel to two channels for
Data and Ack) requires the same change to be copied at six places, which is quite a nuisance.

5 Refinement Strategy

The refinement strategy takes place at two levels. The first one is at the Design Pattern level, where we
create a more and more concrete model of sending and receiving messages (the Transport Layer) through
successive refinements. The second is at the Business Protocol level (the Application Layer), which uses
these design patterns, and creates a more concrete protocol through successive refinements.

Ideally, we would like these two refinement sequences to occur independently of each other, but due
to the limitations of Rodin described in Section 4, we adopt the following refinement strategy.

5.1 Refinement Strategy for the Design Pattern

1. SendAndAck The Abstract Model. The Data channel is not present. The state transitions are
handled by using 2 channels: valid and ack. Sequence Numbers of messages are maintained.

2. SendAndAck1 Add Data First Refinement. We add the Data channel.

3. SendAndAck One Channel Ideally, this should be a refinement of the above machine. But due to
problems with using the Witness feature, we created a separate machine. We do away with the valid
channel, as the Data channel takes care of the validity. We also do away with sequence numbers, as
they are not required in this problem.

5.2 Refinement Strategy for the Bussiness Protocol

1. m00 States and Transitions The Abstract Model. All the state transitions are the events.

2. m01 Convergence of Buyer Events We prove that the Buyer Events converge, that is, only a
finite number of state transitions can occur for the buyer.

4

6 PERSONAL COMMENTS, INSIGHTS AND LESSONS LEARNT

3. m02 Convergence of Seller Events We prove that the Seller Events converge, that is, only a
finite number of state transitions can occur for the seller.

4. m03 Introducing SendAndAck We introduce the communication channel from the buyer to the
seller in this refinement. Design Patterns are used.

5. m04 Introducing Reverse SendAndAck We introduce the communication channel from the
seller to the buyer in this refinement. Design Patterns are used. This communication channel is
required for the asynchronous communication in the free game state.

6 Personal comments, insights and lessons learnt

• Event-B: The Event-B platform is an excellent one for modelling various kinds of systems. In
particular, with reference to this project, it is very nice when modeling network protocols, as things
happen independently and asynchronously. Events capture this requirement particularly well. An-
other good thing about modeling in Event-B is that it makes you prove the validity of the invariants
at every step. Hence, if the requirements are sufficiently well captured by the invariants, it is very
likely that no mistakes will be commited.

• Rodin: The Rodin platform is an eclipse based platform for modeling within the Event-B frame-
work. It allows us to define the models, calculates the proof obligations and either solves them
automatically using external theorem provers or gives the user to manually perform the proof. [3]
That said, we felt that a few features were missing from Rodin, such as Design Patterns. However,
Rodin is an Open Source tool, and is extensible through plugins, hence with time all such features
can be expected to be present.

• Proof Techniques: In our first attempt, many proofs could not be automatically performed by
the Rodin provers, even when we intuitively felt that the events should maintain them. Without
modifying the events (e.g. by adding new guards), we realized that there are two ways to make the
proofs go through.

1. Use the interactive proof mode to manually prove the theorems.

2. Add new redundant invariants (those which are implied by pre-existing invariants).

The second method above is a valid one, since we are not changing the events themselves, nor are
we adding additional constrainsts to the system. We are simply giving Rodin additional information
about the system (which ideally it should already know), so as to help its automatic provers do their
job properly. We have extensively used this method in our project. Thus, there are a very large
number of invariants that need to be proved, but most of the proofs go through with the automatic
provers.

• Personal Comments: This is the first time we are using the Event-B framework and Rodin. Thus,
in hindsight, we notice a few mistakes that a seasoned Event-B programmer would not have done.
Our refinement strategy was not as smooth as the ones done in [1]. Abrial does the refinements
in a way that at every refinement, only a very little additional thing is added. In our project,
the first two refinements were relatively small, but the third one was a large jump. Several of the
requirements were added to the model only in the third refinement. In hindsight, we feel that this
refinement could have been broken up into two or more refinements. With more experience in this
methodology, this skill shall also be learnt.

• Future Work: A few more refinements would still be needed to complete the modeling of this
project. One important thing to do which is not done is to prove Deadlock Freedom. This can either
be done by proving Deadlock Freedom in the abstract machine, and Relative Deadlock Freedom in
each of the refinements; or by proving Deadlock Freedom in the final refinement. This, along with
the proof of the variant, is important to show that the protocol definitely finishes.

5

7 THE RODIN MODELS

Another thing to do is to add an unreliable channel over which the Transport Layer runs. This
can be done by introducing new events, known as Demon Events, which tamper with the data
going over a channel. For more details on how this technique is used, see the chapter on Bounded
Retransmission Protocol in [1].

Another thing left to do is to add a single communication from the seller to the buyer in the Last
Proposal state. Right now, we assume that the seller sends this with the Ack. However, due to this
assumption, the last message sent by the seller in this state has no Ack, and hence must be sent on
trust over an unreliable channel. This will be very similar to the message sent by the seller in the
free game state. Also, a new state will need to be added, since exactly one message must be sent
by the seller. This will also be similar to the state transitions already done. We skip this part due
to lack of time.

7 The Rodin Models

This section contains the details of the models. The comments are part of the model and are included
here by the LATEXplugin. Information about the generated proof obligations is not available.

7.1 Refinements for the Design Pattern

An Event-B Specification of SendAck context

Creation Date: 11 Apr 2011 @ 08:17:08 PM

CONTEXT SendAck context
The context seen by machines which send and receive messages

SETS

Boolean A Boolean Set. Contains ’true’ and ’false’

DataSet The values which the Data Channel can take

CONSTANTS

t True

f False

fail Message saying ’fail’

invalid Data channel is empty

succeed Message saying ’succeed’

last proposal Message saying ’go to last prop state’

begin Message saying ’go to free game state’

DataDataSet This is the subset of DataSet that consists of all messages except control messages

AXIOMS

axm1 : Boolean = {t , f }
Definition of Boolean

axm2 : t 6= f

Definition of Boolean

axm3 : fail ∈ DataSet

axm10 : succeed ∈ DataSet

axm5 : invalid ∈ DataSet

axm14 : last proposal ∈ DataSet

axm19 : begin ∈ DataSet

axm7 : fail 6= invalid

axm11 : succeed 6= invalid

6

7.1 Refinements for the Design Pattern 7 THE RODIN MODELS

axm13 : succeed 6= fail

axm15 : last proposal 6= fail

axm17 : last proposal 6= invalid

axm18 : last proposal 6= succeed

axm20 : begin 6= fail

axm21 : begin 6= invalid

axm22 : begin 6= succeed

axm23 : begin 6= last proposal

axm9 : DataSet \ {invalid} 6= ∅

The Dataset contains some valid things

axm24 : DataDataSet ⊆ DataSet

Definition of DataDataSet

axm25 : DataDataSet = DataSet \ {fail , succeed , invalid , last proposal , begin}
Definition of DataDataSet

axm26 : DataDataSet 6= ∅

There exist messages other than control messages

END

An Event-B Specification of SendAndAck

Creation Date: 11 Apr 2011 @ 08:17:13 PM

MACHINE SendAndAck
Abstract model for sending a message and receiving an Ack

SEES SendAck context

VARIABLES

SenderWaitingForACK State of Sender

SendMsgNo Message Number seen by sender(not really required)

RecvMsgNo Message Number seen by receiver(not really required)

Valid Whether Data is valid or not

Ack The Ack Channel

INVARIANTS

inv7 : Valid ∈ Boolean

inv6 : Ack ∈ Boolean

inv1 : SenderWaitingForACK ∈ Boolean

inv3 : SendMsgNo ∈ N

inv4 : RecvMsgNo ∈ N

inv5 : SendMsgNo = RecvMsgNo ∨ SendMsgNo = RecvMsgNo + 1

inv8 : SenderWaitingForACK = f ⇒Ack = f

inv9 : Valid = t ⇒ SenderWaitingForACK = t

inv10 : Ack = t ⇒Valid = f

inv12 : Valid = t ∧ Ack = f ⇒ SendMsgNo = RecvMsgNo + 1

inv13 : Valid = t ∧ Ack = t ⇒ SendMsgNo = RecvMsgNo

inv14 : Valid = f ⇒ SendMsgNo = RecvMsgNo

EVENTS

Initialisation

begin

act1 : SenderWaitingForACK := f

act2 : SendMsgNo := 0

7

7.1 Refinements for the Design Pattern 7 THE RODIN MODELS

act3 : RecvMsgNo := 0

act4 : Valid := f

act5 : Ack := f

end

Event SenderSend =̂
Sender Sends Data

when

grd1 : SenderWaitingForACK = f

grd2 : Valid = f

then

act1 : SenderWaitingForACK := t

act2 : Valid := t

act3 : SendMsgNo := SendMsgNo + 1

end

Event ReceiverReceive =̂
Receiver gets Data and sends ack

when

grd1 : Valid = t

then

act1 : Valid := f

act2 : Ack := t

act3 : RecvMsgNo := RecvMsgNo + 1

end

Event SenderGetACK =̂
Receiver gets the Ack

when

grd1 : SenderWaitingForACK = t

grd2 : Ack = t

then

act1 : Ack := f

act2 : SenderWaitingForACK := f

end

END

An Event-B Specification of SendAndAck One Channel

Creation Date: 11 Apr 2011 @ 08:17:11 PM

MACHINE SendAndAck One Channel
Ideally this should refine the other SendAndAck machines. We get rid of the valid channel

SEES SendAck context

VARIABLES

SenderWaitingForACK

Data

Ack

INVARIANTS

inv11 : Ack ∈ Boolean

inv1 : SenderWaitingForACK ∈ Boolean

inv2 : Data ∈ DataSet

inv6 : SenderWaitingForACK = f ⇒Ack = f

Ack may be true only when sender is waiting for it

8

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

inv13 : Ack = t ⇒ SenderWaitingForACK = t

Ack may not be sent unnecessarily

inv7 : Data 6= invalid ⇒ SenderWaitingForACK = t

Once Sender has received ack, it sets the data to invalid

inv12 : Data = invalid ⇒ SenderWaitingForACK = f

Sender cannot wait for an ack of invalid Data

EVENTS

Initialisation

begin

act1 : Data := invalid

act2 : SenderWaitingForACK := f

act5 : Ack := f

end

Event SenderSend =̂

when

grd1 : SenderWaitingForACK = f

grd2 : Data = invalid

then

act1 : SenderWaitingForACK := t

act2 : Data :∈ DataSet \ {invalid}
end

Event ReceiverReceive =̂

when

grd1 : Data ∈ DataSet \ {invalid}
grd2 : Ack = f

then

act3 : Ack := t

end

Event SenderGetAck =̂

when

grd1 : SenderWaitingForACK = t

grd2 : Data 6= invalid

grd3 : Ack = t

then

act1 : Data := invalid

act2 : SenderWaitingForACK := f

act3 : Ack := f

end

END

7.2 Refinements for the Business Protocol

An Event-B Specification of Context 0

Creation Date: 11 Apr 2011 @ 08:16:56 PM

CONTEXT Context 0
Constext seen by the Bussiness Protocol

SETS

STATUS The state that the protocol can be in

CONSTANTS

init

9

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

free game

last prop

success

failure

AXIOMS

axm1 : STATUS = {init , free game, last prop, success , failure}
The various states which the protocol can be in

axm2 : init 6= free game

axm3 : init 6= last prop

axm4 : init 6= success

axm5 : free game 6= last prop

axm6 : free game 6= success

axm7 : last prop 6= success

axm8 : failure 6= init

axm9 : failure 6= free game

axm10 : failure 6= last prop

axm11 : failure 6= success

END

An Event-B Specification of m00 States and Transitions

Creation Date: 11 Apr 2011 @ 08:17:55 PM

MACHINE m00 States and Transitions
Abstract Model. State Transitions only

SEES Context 0

VARIABLES

buy state Sender’s state

sell state Receiver’s state

INVARIANTS

inv1 : buy state ∈ STATUS

inv2 : sell state ∈ STATUS

EVENTS

Initialisation

begin

act1 : buy state := init

act2 : sell state := init

end

Event Done =̂
This is the event that is called when the protocol finishes

Status anticipated

when

grd1 : buy state ∈ {success , failure}
grd2 : sell state ∈ {success , failure}

then

skip

end

Event Buyer Begin =̂

Status anticipated

10

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

when

grd1 : buy state = init

then

act1 : buy state := free game

end

Event Seller Begin =̂

Status anticipated

when

grd1 : sell state = init

then

act1 : sell state := free game

end

Event Buyer Fail =̂

Status anticipated

when

grd1 : buy state ∈ {init , free game, last prop}
then

act1 : buy state := failure

end

Event Seller Fail =̂

Status anticipated

when

grd1 : sell state ∈ {init , free game, last prop}
then

act1 : sell state := failure

end

Event Buyer Lastprop =̂

Status anticipated

when

grd1 : buy state = free game

then

act1 : buy state := last prop

end

Event Seller Lastprop =̂

Status anticipated

when

grd1 : sell state = free game

then

act1 : sell state := last prop

end

Event Buyer Succeed =̂

Status anticipated

when

grd1 : buy state = last prop

then

act1 : buy state := success

end

Event Seller Succeed =̂

Status anticipated

when

11

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

grd1 : sell state = last prop

then

act1 : sell state := success

end

END

An Event-B Specification of m01 Convergence of Buyer Events

Creation Date: 11 Apr 2011 @ 08:17:20 PM

MACHINE m01 Convergence of Buyer Events

REFINES m00 States and Transitions

SEES Context 0

VARIABLES

buy state Sender’s state

sell state Receiver’s state

buyer variant This is a number that is the variant for the state that the machine is in. The
value set by the event is determined by a topological sort on the FSM

INVARIANTS

inv1 : buyer variant ∈ N

The variant is a natural number.

inv2 : buy state = init ⇒ buyer variant = 5

inv3 : buy state = free game ⇒ buyer variant = 4

inv4 : buy state = last prop ⇒ buyer variant = 3

inv5 : buy state = success ⇒ buyer variant = 2

inv6 : buy state = failure ⇒ buyer variant = 1

EVENTS

Initialisation

extended

begin

act1 : buy state := init

act2 : sell state := init

act3 : buyer variant := 5

end

Event Done =̂
This is the event that is called when the protocol finishes

extends Done

when

grd1 : buy state ∈ {success, failure}
grd2 : sell state ∈ {success, failure}

then

skip

end

Event Buyer Begin =̂

Status convergent

extends Buyer Begin

when

grd1 : buy state = init

then

act1 : buy state := free game

act2 : buyer variant := 4

12

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

end

Event Seller Begin =̂

Status anticipated

extends Seller Begin

when

grd1 : sell state = init

then

act1 : sell state := free game

end

Event Buyer Fail =̂

Status convergent

extends Buyer Fail

when

grd1 : buy state ∈ {init, free game, last prop}
then

act1 : buy state := failure

act2 : buyer variant := 1

end

Event Seller Fail =̂

Status anticipated

extends Seller Fail

when

grd1 : sell state ∈ {init, free game, last prop}
then

act1 : sell state := failure

end

Event Buyer Lastprop =̂

Status convergent

extends Buyer Lastprop

when

grd1 : buy state = free game

then

act1 : buy state := last prop

act2 : buyer variant := 3

end

Event Seller Lastprop =̂

Status anticipated

extends Seller Lastprop

when

grd1 : sell state = free game

then

act1 : sell state := last prop

end

Event Buyer Succeed =̂

Status convergent

extends Buyer Succeed

when

grd1 : buy state = last prop

then

act1 : buy state := success

13

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

act2 : buyer variant := 2

end

Event Seller Succeed =̂

Status anticipated

extends Seller Succeed

when

grd1 : sell state = last prop

then

act1 : sell state := success

end

VARIANT

buyer variant

END

An Event-B Specification of m02 Convergence of Seller Events

Creation Date: 11 Apr 2011 @ 08:17:22 PM

MACHINE m02 Convergence of Seller Events

REFINES m01 Convergence of Buyer Events

SEES Context 0

VARIABLES

buy state Sender’s state

sell state Receiver’s state

buyer variant This is a number that is the variant for the state that the machine is in. The
value set by the event is determined by a topological sort on the FSM

seller variant This is a number that is the variant for the state that the machine is in. The
value set by the event is determined by a topological sort on the FSM

INVARIANTS

inv1 : seller variant ∈ N

The variant is a natural number.

inv2 : sell state = init ⇒ seller variant = 5

inv3 : sell state = free game ⇒ seller variant = 4

inv4 : sell state = last prop ⇒ seller variant = 3

inv5 : sell state = success ⇒ seller variant = 2

inv6 : sell state = failure ⇒ seller variant = 1

EVENTS

Initialisation

extended

begin

act1 : buy state := init

act2 : sell state := init

act3 : buyer variant := 5

act4 : seller variant := 5

end

Event Done =̂
This is the event that is called when the protocol finishes

extends Done

when

grd1 : buy state ∈ {success, failure}

14

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

grd2 : sell state ∈ {success, failure}
then

skip

end

Event Buyer Begin =̂

extends Buyer Begin

when

grd1 : buy state = init

then

act1 : buy state := free game

act2 : buyer variant := 4

end

Event Seller Begin =̂

Status convergent

extends Seller Begin

when

grd1 : sell state = init

then

act1 : sell state := free game

act2 : seller variant := 4

end

Event Buyer Fail =̂

extends Buyer Fail

when

grd1 : buy state ∈ {init, free game, last prop}
then

act1 : buy state := failure

act2 : buyer variant := 1

end

Event Seller Fail =̂

Status convergent

extends Seller Fail

when

grd1 : sell state ∈ {init, free game, last prop}
then

act1 : sell state := failure

act2 : seller variant := 1

end

Event Buyer Lastprop =̂

extends Buyer Lastprop

when

grd1 : buy state = free game

then

act1 : buy state := last prop

act2 : buyer variant := 3

end

Event Seller Lastprop =̂

Status convergent

extends Seller Lastprop

when

15

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

grd1 : sell state = free game

then

act1 : sell state := last prop

act2 : seller variant := 3

end

Event Buyer Succeed =̂

extends Buyer Succeed

when

grd1 : buy state = last prop

then

act1 : buy state := success

act2 : buyer variant := 2

end

Event Seller Succeed =̂

Status convergent

extends Seller Succeed

when

grd1 : sell state = last prop

then

act1 : sell state := success

act2 : seller variant := 2

end

VARIANT

seller variant

END

An Event-B Specification of m03 Introducing SendAndAck

Creation Date: 11 Apr 2011 @ 08:17:24 PM

MACHINE m03 Introducing SendAndAck
Introducing the Channel from the Buyer to Seller

REFINES m02 Convergence of Seller Events

SEES Context 0, SendAck context

VARIABLES

buy state Sender’s state

sell state Receiver’s state

buyer variant This is a number that is the variant for the state that the machine is in. The
value set by the event is determined by a topological sort on the FSM

seller variant

Data The Data Channel (visible to sender and receiver)

Ack The Ack Channel (visible to sender and receiver)

BuyerWaitingForACK

INVARIANTS

inv1 : Ack ∈ Boolean

Invariant from the SendAndAck Design Pattern

inv2 : Data ∈ DataSet

Invariant from the SendAndAck Design Pattern

inv3 : BuyerWaitingForACK ∈ Boolean

Invariant from the SendAndAck Design Pattern

16

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

inv4 : BuyerWaitingForACK = f ⇒Ack = f

Invariant from the SendAndAck Design Pattern

inv5 : Ack = t ⇒ BuyerWaitingForACK = t

Invariant from the SendAndAck Design Pattern

inv6 : Data 6= invalid ⇒ BuyerWaitingForACK = t

Invariant from the SendAndAck Design Pattern

inv7 : Data = invalid ⇒ BuyerWaitingForACK = f

Invariant from the SendAndAck Design Pattern

inv8 : buy state = failure ⇒ sell state = failure

Captures requirement. Buyer enters failure state only after seller has already done so

inv9 : Data = fail ∧ Ack = t ⇒ sell state = failure

Invariant added to enable Buyer Fail/inv8/INV to go through

inv10 : buy state = success ⇒ sell state = success

Captures requirement. Buyer enters succeed state only after seller has already done so

inv11 : Data = succeed ∧ Ack = t ⇒ sell state = success

Invariant added to enable Buyer Succeed/inv10/INV to go through

inv12 : buy state = free game ∧Data 6= fail ∧Data 6= last proposal ⇒ sell state = free game

Captures requirement. Buyer enters free game state when seller has already done so

inv15 : Data = begin ∧ Ack = t ⇒ sell state = free game

Invariant added to enable Buyer Begin/inv12/INV to go through

inv13 : buy state = last prop ∧Data 6= fail ∧Data 6= succeed ⇒ sell state = last prop

Captures requirement. Buyer enters last proposal state when seller has already done so

inv14 : Data = last proposal ∧ Ack = t ⇒ sell state = last prop

Invariant added to enable Buyer Lastprop/inv13/INV to go through

inv16 : Data ∈ DataDataSet ⇒ (buy state = free game ∧ sell state = free game)
Non-Control messages can only be sent in the free game state

EVENTS

Initialisation

extended

begin

act1 : buy state := init

act2 : sell state := init

act3 : buyer variant := 5

act4 : seller variant := 5

act5 : Data := invalid

act6 : BuyerWaitingForACK := f

act7 : Ack := f

end

Event Done =̂
This is the event that is called when the protocol finishes

extends Done

when

grd1 : buy state ∈ {success, failure}
grd2 : sell state ∈ {success, failure}

then

skip

end

Event Buyer Send Begin =̂

when

grd1 : buy state = init

17

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

grd2 : Data = invalid

grd3 : BuyerWaitingForACK = f

then

act1 : Data := begin

act2 : BuyerWaitingForACK := t

end

Event Seller Begin =̂

extends Seller Begin

when

grd1 : sell state = init

grd2 : Data = begin

grd3 : Ack = f

then

act1 : sell state := free game

act2 : seller variant := 4

act3 : Ack := t

end

Event Buyer Begin =̂

extends Buyer Begin

when

grd1 : buy state = init

grd2 : Data = begin

grd3 : Ack = t

grd4 : BuyerWaitingForACK = t

then

act1 : buy state := free game

act2 : buyer variant := 4

act3 : Data := invalid

act4 : Ack := f

act5 : BuyerWaitingForACK := f

end

Event Buyer Send Fail =̂

when

grd1 : buy state ∈ {init , free game, last prop}
grd3 : Data = invalid

grd4 : BuyerWaitingForACK = f

then

act1 : Data := fail

act2 : BuyerWaitingForACK := t

end

Event Seller Fail =̂

extends Seller Fail

when

grd1 : sell state ∈ {init, free game, last prop}
grd2 : Data = fail

grd3 : Ack = f

then

act1 : sell state := failure

act2 : seller variant := 1

act3 : Ack := t

end

18

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

Event Buyer Fail =̂

extends Buyer Fail

when

grd1 : buy state ∈ {init, free game, last prop}
grd2 : Data = fail

grd3 : Ack = t

grd4 : BuyerWaitingForACK = t

then

act1 : buy state := failure

act2 : buyer variant := 1

act3 : Ack := f

act4 : Data := invalid

act5 : BuyerWaitingForACK := f

end

Event Buyer Send Succeed =̂

when

grd1 : buy state = last prop

grd2 : Data = invalid

grd3 : BuyerWaitingForACK = f

then

act1 : Data := succeed

act2 : BuyerWaitingForACK := t

end

Event Seller Succeed =̂

extends Seller Succeed

when

grd1 : sell state = last prop

grd2 : Data = succeed

grd3 : Ack = f

then

act1 : sell state := success

act2 : seller variant := 2

act3 : Ack := t

end

Event Buyer Succeed =̂

extends Buyer Succeed

when

grd1 : buy state = last prop

grd2 : Data = succeed

grd3 : Ack = t

grd4 : BuyerWaitingForACK = t

then

act1 : buy state := success

act2 : buyer variant := 2

act3 : Data := invalid

act4 : Ack := f

act5 : BuyerWaitingForACK := f

end

Event Buyer Send LastProp =̂

when

grd1 : buy state = free game

19

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

grd2 : Data = invalid

grd3 : BuyerWaitingForACK = f

then

act1 : Data := last proposal

act2 : BuyerWaitingForACK := t

end

Event Seller Lastprop =̂

extends Seller Lastprop

when

grd1 : sell state = free game

grd2 : Data = last proposal

grd3 : Ack = f

then

act1 : sell state := last prop

act2 : seller variant := 3

act3 : Ack := t

end

Event Buyer Lastprop =̂

extends Buyer Lastprop

when

grd1 : buy state = free game

grd2 : Data = last proposal

grd3 : Ack = t

grd4 : BuyerWaitingForACK = t

then

act1 : buy state := last prop

act2 : buyer variant := 3

act3 : Data := invalid

act4 : Ack := f

act5 : BuyerWaitingForACK := f

end

Event Buyer Send Stuff =̂
Buyer sends something and waits for ack, during free game state

when

grd1 : Data = invalid

grd2 : buy state = free game

then

act1 : Data :∈ DataDataSet

act2 : BuyerWaitingForACK := t

end

Event Seller Get Stuff =̂
Seller sends the Ack for the buyer’s message in the free game state

when

grd3 : sell state = free game

grd1 : Data ∈ DataDataSet

grd2 : Ack = f

then

act1 : Ack := t

end

Event Buyer Get Ack for Stuff =̂

when

20

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

grd1 : BuyerWaitingForACK = t

grd2 : buy state = free game

grd3 : Data ∈ DataDataSet

grd4 : Ack = t

then

act1 : BuyerWaitingForACK := f

act2 : Data := invalid

act3 : Ack := f

end

END

An Event-B Specification of m04 Introducing Reverse SendAndAck

Creation Date: 11 Apr 2011 @ 08:17:27 PM

MACHINE m04 Introducing Reverse SendAndAck
Introducing the channel from the seller to the buyer

REFINES m03 Introducing SendAndAck

SEES Context 0, SendAck context

VARIABLES

buy state Sender’s state

sell state Receiver’s state

buyer variant This is a number that is the variant for the state that the machine is in. The
value set by the event is determined by a topological sort on the FSM

seller variant

Data The Data Channel (visible to sender and receiver)

Ack The Ack Channel (visible to sender and receiver)

BuyerWaitingForACK

ReverseData The Reverse Data Channel (visible to sender and receiver)

ReverseAck The Reverse Ack Channel (visible to sender and receiver)

SellerWaitingForACK

INVARIANTS

inv1 : Ack ∈ Boolean

inv2 : SellerWaitingForACK ∈ Boolean

inv3 : ReverseData ∈ DataDataSet ∪ {invalid}
ReverseData can’t be control packets

inv4 : SellerWaitingForACK = f ⇒ ReverseAck = f

inv5 : ReverseAck = t ⇒ SellerWaitingForACK = t

inv6 : ReverseData 6= invalid ⇒ SellerWaitingForACK = t

inv7 : ReverseData = invalid ⇒ SellerWaitingForACK = f

inv8 : ReverseData 6= invalid ⇒ sell state = free game

EVENTS

Initialisation

extended

begin

act1 : buy state := init

act2 : sell state := init

act3 : buyer variant := 5

act4 : seller variant := 5

act5 : Data := invalid

21

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

act6 : BuyerWaitingForACK := f

act7 : Ack := f

act8 : ReverseData := invalid

act9 : SellerWaitingForACK := f

act10 : ReverseAck := f

end

Event Done =̂
This is the event that is called when the protocol finishes

extends Done

when

grd1 : buy state ∈ {success, failure}
grd2 : sell state ∈ {success, failure}

then

skip

end

Event Buyer Send Begin =̂

extends Buyer Send Begin

when

grd1 : buy state = init

grd2 : Data = invalid

grd3 : BuyerWaitingForACK = f

then

act1 : Data := begin

act2 : BuyerWaitingForACK := t

end

Event Seller Begin =̂

extends Seller Begin

when

grd1 : sell state = init

grd2 : Data = begin

grd3 : Ack = f

then

act1 : sell state := free game

act2 : seller variant := 4

act3 : Ack := t

end

Event Buyer Begin =̂

extends Buyer Begin

when

grd1 : buy state = init

grd2 : Data = begin

grd3 : Ack = t

grd4 : BuyerWaitingForACK = t

then

act1 : buy state := free game

act2 : buyer variant := 4

act3 : Data := invalid

act4 : Ack := f

act5 : BuyerWaitingForACK := f

end

Event Buyer Send Fail =̂

22

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

extends Buyer Send Fail

when

grd1 : buy state ∈ {init, free game, last prop}
grd3 : Data = invalid

grd4 : BuyerWaitingForACK = f

then

act1 : Data := fail

act2 : BuyerWaitingForACK := t

end

Event Seller Fail =̂

extends Seller Fail

when

grd1 : sell state ∈ {init, free game, last prop}
grd2 : Data = fail

grd3 : Ack = f

grd4 : SellerWaitingForACK = f

Change the state only when the previous ack has been received
then

act1 : sell state := failure

act2 : seller variant := 1

act3 : Ack := t

end

Event Buyer Fail =̂

extends Buyer Fail

when

grd1 : buy state ∈ {init, free game, last prop}
grd2 : Data = fail

grd3 : Ack = t

grd4 : BuyerWaitingForACK = t

then

act1 : buy state := failure

act2 : buyer variant := 1

act3 : Ack := f

act4 : Data := invalid

act5 : BuyerWaitingForACK := f

end

Event Buyer Send Succeed =̂

extends Buyer Send Succeed

when

grd1 : buy state = last prop

grd2 : Data = invalid

grd3 : BuyerWaitingForACK = f

then

act1 : Data := succeed

act2 : BuyerWaitingForACK := t

end

Event Seller Succeed =̂

extends Seller Succeed

when

grd1 : sell state = last prop

grd2 : Data = succeed

23

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

grd3 : Ack = f

then

act1 : sell state := success

act2 : seller variant := 2

act3 : Ack := t

end

Event Buyer Succeed =̂

extends Buyer Succeed

when

grd1 : buy state = last prop

grd2 : Data = succeed

grd3 : Ack = t

grd4 : BuyerWaitingForACK = t

then

act1 : buy state := success

act2 : buyer variant := 2

act3 : Data := invalid

act4 : Ack := f

act5 : BuyerWaitingForACK := f

end

Event Buyer Send LastProp =̂

extends Buyer Send LastProp

when

grd1 : buy state = free game

grd2 : Data = invalid

grd3 : BuyerWaitingForACK = f

then

act1 : Data := last proposal

act2 : BuyerWaitingForACK := t

end

Event Seller Lastprop =̂

extends Seller Lastprop

when

grd1 : sell state = free game

grd2 : Data = last proposal

grd3 : Ack = f

grd4 : SellerWaitingForACK = f

Change state only when previous ack has been received
then

act1 : sell state := last prop

act2 : seller variant := 3

act3 : Ack := t

end

Event Buyer Lastprop =̂

extends Buyer Lastprop

when

grd1 : buy state = free game

grd2 : Data = last proposal

grd3 : Ack = t

grd4 : BuyerWaitingForACK = t

then

24

7.2 Refinements for the Business Protocol 7 THE RODIN MODELS

act1 : buy state := last prop

act2 : buyer variant := 3

act3 : Data := invalid

act4 : Ack := f

act5 : BuyerWaitingForACK := f

end

Event Buyer Send Stuff =̂
Buyer sends something and waits for ack, during free game state

extends Buyer Send Stuff

when

grd1 : Data = invalid

grd2 : buy state = free game

then

act1 : Data :∈ DataDataSet

act2 : BuyerWaitingForACK := t

end

Event Seller Get Stuff =̂
Seller sends the Ack for the buyer’s message in the free game state

extends Seller Get Stuff

when

grd3 : sell state = free game

grd1 : Data ∈ DataDataSet

grd2 : Ack = f

then

act1 : Ack := t

end

Event Buyer Get Ack for Stuff =̂

extends Buyer Get Ack for Stuff

when

grd1 : BuyerWaitingForACK = t

grd2 : buy state = free game

grd3 : Data ∈ DataDataSet

grd4 : Ack = t

then

act1 : BuyerWaitingForACK := f

act2 : Data := invalid

act3 : Ack := f

end

Event Seller Send Stuff =̂

when

grd1 : SellerWaitingForACK = f

grd2 : ReverseData = invalid

grd3 : sell state = free game

then

act1 : SellerWaitingForACK := t

act2 : ReverseData :∈ DataDataSet

end

Event Buyer Get Stuff =̂

when

grd1 : ReverseData ∈ DataDataSet

grd2 : ReverseAck = f

25

REFERENCES REFERENCES

grd3 : buy state = free game

then

act1 : ReverseAck := t

end

Event Seller Get Ack for Stuff =̂

when

grd1 : SellerWaitingForACK = t

grd2 : ReverseData 6= invalid

grd3 : ReverseAck = t

grd4 : sell state = free game

then

act1 : ReverseData := invalid

act2 : ReverseAck := f

act3 : SellerWaitingForACK := f

end

END

References

[1] Abrial, J.-R. Modeling in Event-B: System and Software Engineering. Cambridge University Press,
2010.

[2] Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., and Voisin, L.

Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12, 6 (2010), 447–466.

[3] Breitner, J. Proving vizings theorem with rodin. Tech. rep., Indian Institute of Technology, Bombay,
March 2011.

26

	Introduction
	Problem Specification
	Requirements Document
	Design Patterns
	Refinement Strategy
	Refinement Strategy for the Design Pattern
	Refinement Strategy for the Bussiness Protocol

	Personal comments, insights and lessons learnt
	The Rodin Models
	Refinements for the Design Pattern
	Refinements for the Business Protocol

